BIOSAXS – A METHOD TO ACCELERATE AND DE-RISK ANTIMICROBIAL DRUG DEVELOPMENT

PRESENTED BY KAI HILPERT READER IN INFECTION AND IMMUNOLOGY FOUNDER AND DIRECTOR OF TIKA DIAGNOSTICS

CONTENT

Overview of our research

Motivation

Cationic antimicrobial peptides

SPPS - on cellulose

BioSAXS and bacteria

Take home message

Thanks and questions

OVERVIEW

OVERVIEW

TB Diagnostics

- 2013 Discovery of growth-stimulating peptides
- 2014 TiKa Diagnostics LTD
- 2014-2022 £ 1.5 million funding
- 2017 ISO 13485 for research and production of peptides
- 2017 First sales
- 2019 Successfully finished 1. clinical trial
- 2023 Estimated finish of 2. clinical trial

OVERVIEW

MOTIVATION

2019 - Across 88 Pathogen–Drug Combinations

CATIONIC ANTIMICROBIAL PEPTIDES

- In bacteria, fungi, insects, tunicates, amphibians, crustaceans, birds, fish and mammals
- About 3,000 natural AMPs known
- About 15,000 artificial AMPs
- Part of the innate immunity in higher organism
- 12 to 80 aa, cationic, amphiphilic
- Different structures

I. Antibacterial

I. Antibacterial II. Antifungal III. Antiviral

I. Antibacterial II. Antifungal III. Antiviral IV. Antiparasitical

I. Antibacterial II. Antifungal III. Antiviral IV. Antiparasitical V. Anticancer

I. Antibacterial II. Antifungal III. Antiviral IV. Antiparasitical V. Anticancer VI. Immunomodulatory VII. Chemotactic

doi.org/10.3390/ph6060728

TARGETS OF ANTIMICROBIAL PEPTIDES

Histatin-5 eNAP-2

Ixodidin

Other targets

Lactoferricin B (inhibits two-component system) Apidaecin Hb1a (inhibits ABC transport system) HNP-1, Pep5, tPMP-1 (activates autolytic enzyme)

HISTORY SPPS - ON CELLULOSE

Ronald Frank

TECHNOLGY

R - S

Modification of the protected peptides Step 46 (A, B or C)

X)

Cleavage of the <u>Side-Chain</u> Protection <u>G</u>roups (SCPG) Steps 47-53

Modification of the unprotected peptides Steps 54-58

R-S.

TECHNOLGY

TECHNOLOGY

TECHNOLOGY

natureprotocols

Explore Content Y	Journal Information ¥	Publish With Us Y	Subscribe
Explore Content	Journal information ·	Publish with US	Subscrit

nature > nature protocols > protocols > article

Published: 24 May 2007

Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion

Kai Hilpert ⊠, Dirk FH Winkler & Robert EW Hancock

Nature Protocols2, 1333–1349(2007)Cite this article943Accesses193Citations12AltmetricMetrics

ANTIMICROBIAL SCREEN

HEMOLYTIC SCREEN

SOURCE

DBAASP_{v3.0} Database of antimicrobial activity and structure of peptides

Home Search Tools Statistics About Terms And Conditions API Help Feedback

DBAASP peptides with reported activities against: SARS-CoV-2 DBAASP peptides with reported activities against enveloped positive-sense RNA viruses: HIV, HCV, Coronaviruses, PRRSV

News		
Monome	er: 1840	5
Multime	er: 246	
Multi Peptid	e: 227	
News Records with the Dat	ta	
on Synergistic Activitie	s: 567	

Overview

Database of Antimicrobial Activity and Structure of Peptides (DBAASP) is the manually-curated database. It has been developed to provide the scientific community with the information and analytical resources for designing antimicrobial compounds with a high therapeutic index.

APPLICATIONS

nature biotechnology

Explore content V About the journal V Publish with us V

Subscribe

<u>nature</u> > <u>nature biotechnology</u> > <u>letters</u> > article

Published: 24 July 2005

High-throughput generation of small antibacterial peptides with improved activity

Kai Hilpert, Rudolf Volkmer-Engert, Tess Walter & Robert E W Hancock 🖂

Nature Biotechnology 23, 1008–1012 (2005) Cite this article

2694 Accesses 301 Citations 9 Altmetric Metrics

APPLICATIONS

Search text, DOI, authors, etc.

RETURN TO ISSUE < PREV ARTICLES

Use of Artificial Intelligence in the Design of Small Peptide Antibiotics Effective against a Broad Spectrum of Highly Antibiotic-Resistant Superbugs

Artem Cherkasov^{‡¶}, Kai Hilpert^{†¶}, Håvard Jenssen[†], Christopher D. Fjell[‡], Matt Waldbrook[†], Sarah C. Mullaly[†], Rudolf Volkmer[§] , and Robert E.W. Hancock^{†*}

View Author Information ~

Cite this: ACS Chem. Biol. 2009, 4, 1, 65–74
 Publication Date: December 4, 2008 ~
 https://doi.org/10.1021/cb800240j
 Copyright © 2008 American Chemical Society
 RIGHTS & PERMISSIONS

My Activ

APPLICATIONS

RETURN TO ISSUE < PREV ARTICLE NEXT >

Peptide Inhibitors of Bacterial Protein Synthesis with Broad Spectrum and SbmA-Independent Bactericidal Activity against Clinical Pathogens

Mario Mardirossian, Riccardo Sola, Bertrand Beckert, Erica Valencic, Dominic W. P. Collis, Jure Borišek, Federica Armas, Adriana Di Stasi, Jan Buchmann, Egor A. Syroegin, Yury S. Polikanov, Alessandra Magistrato, Kai Hilpert, Daniel N. Wilson , and Marco Scocchi*

Cite this: J. Med. Chem. 2020, 63, 17, 9590–9602
 Publication Date: July 29, 2020 ~
 https://doi.org/10.1021/acs.jmedchem.0c00665
 Copyright © 2020 American Chemical Society
 RIGHTS & PERMISSIONS

Article Views Altmetric Citations
901
8
10
LEARN ABOUT THESE METRICS

Share Add to Export

Journa Medicin Chemist

Journal of Medicinal Chemistry

CHALLENGE

Discovered hundreds of peptides with high therapeutic potential

Peptide with a new mode of action best

Mode of action studies expensive and time consuming

BIOSAXS ???

Pioneering work

Measurements are very fast (2 sec)

Robust statistic

Hundreds of compounds can be screened

Data visualisation via PCA

BioSAXS Beamline P12, PETRA III, Hamburg

BioSAXS Beamline P12, PETRA III, Hamburg

Biochimica et Biophysica Acta (BBA) -Biomembranes

Volume 1858, Issue 5, May 2016, Pages 918-925

Small angle X-ray scattering as a highthroughput method to classify antimicrobial modes of action ☆

A.R. von Gundlach ^a, V.M. Garamus ^b, T. Gorniak ^a, H.A. Davies ^c, M. Reischl ^d, R. Mikut ^d, K. Hilpert ^e A¹, A. Rosenhahn ^{a, 1}

- Cell wall synthesis-inhibiting beta-lactams (ampicillin, cefepime, piperacillin),
- Cell wall- and cell membrane disrupting lipopeptide (polymyxin B),
- Gyrase inhibiting quinolone (ciprofloxacin),
- RNA synthesis inhibitor (rifampicin),
- Preventing the association of a new tRNA (tetracycline),
- Blocking peptidyl transferase (chloramphenicol),
- Aminoglycosides, binding to 30S ribosome (gentamycin, kanamycin),
- Peptide with unknown mode of action (AMP)

ISSN: 1600-5767

Volume 49 | Part 6 | Decer https://doi.or

A. R. von Gundlach,^{a*} V. M. Garamus,^b T. M. Willey,^c J. Ilavsky,^d K. Hilpert^e[‡] and A. Rosenhahn^a[‡]

b) Proteinsc) DNA-fibres withhistonesd) ribosoms

EXPANSION OF POSSIBILITIES

BioSAXS Measurements Reveal That Two Antimicrobial Peptides Induce Similar Molecular Changes in Gram-Negative and Gram-Positive Bacteria

Andreas von Gundlach¹, Martin P. Ashby², Jurnorain Gani², Paula Matilde Lopez-Perez³, Alan Roy Cookson⁴, Sharon Ann Huws⁵, Christoph Rumancev¹, Vasil M. Garamus⁶, Ralf Mikut^{7*}, Axel Rosenhahn^{1†} and Kai Hilpert^{2†}

OPEN ACCESS

SCATTERING CURVES

Real space range [nm]

FIRST APPLICATION

Rational Designed Hybrid Peptides Show up to a 6-Fold Increase in Antimicrobial Activity and Demonstrate Different Ultrastructural Changes as the Parental Peptides Measured by BioSAXS

Kai Hilpert^{1*}, Jurnorain Gani¹, Christoph Rumancev², Nathan Simpson¹, Paula Matilde Lopez-Perez³, Solution Wasil M. Garamus⁴, Andreas Robert von Gundlach², Petar Markov⁵, Marco Scocchi⁶, Ralf Mikut^{7*} and Axel Rosenhahn²

Journal of Medicinal Chemistry

Subscriber access provided by UNIVERSITA STUDI TRIESTE

Peptide inhibitors of bacterial protein synthesis with broad spectrum and SbmA-independent bactericidal activity against clinical pathogens.

Mario Mardirossian, Riccardo Sola, Bertrand Beckert, Erica Valencic, Dominic W. P. Collis, Jure Borišek, Federica Armas, Adriana Di Stasi, Jan Buchmann, Egor A. Syroegin, Yury Polikanov, Alessandra Magistrato, Kai Hilpert, Daniel N. Wilson, and Marco Scocchi *J. Med. Chem.*, Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.0c00665 • Publication Date (Web): 29 Jul 2020

Downloaded from pubs.acs.org on August 3, 2020

D7 a	MIC (μM)									
B /-	wt ^b	scr ^c	G	\mathbf{A}^{d}	S	Р	R	Е	F	W
R1			8	4	16	8	-	64	4	2
\mathbf{R}_2			16	16	16	64	-	64	16	8
I3			16	16	16	16	8	64	16	4
R4			16	16	32	16	-	>64	16	8
P 5			8	8	16	-	8	32	8	4
R ₆			32	16	32	32	-	>64	16	8
P ₇			16	16	16	-	8	32	8	4
P ₈			16	16	16	-	16	64	16	4
R9	8	04	64	64	32	16	-	>64	16	4
L_{10}			64	64	32	64	32	>64	32	16
P11			32	32	32	-	16	64	32	8
R12			32	32	16	32	-	>64	16	8
P13			16	16	16	-	8	64	8	2
R14			32	32	32	32	-	64	8	4
P15			16	8	16	-	16	32	8	4
R ₁₆			16	16	16	32	-	64	8	8

RIBOSOM BINDING

Name	Description	Sequence*	MRSA	E. coli	PA	HC50	Therapeutic window HC50/ MIC(MRSA)
optP1	Optimized 9mer	KIILRIRWR	1.5	1	6	205	137
optP7	Optimized 9mer	KRRVRWIIW	6	1.5	3	>195	>32.5
consP1	Consensus sequence derived from multiple alignment	VRKPPYLPRPRPRPL	>139	35	>139	>139	n.a
hyP1CoG1	Hybrid peptide with Gly linker, optP1 C-terminal	KIILRIRWRGGGVRKPPYLPRPRPRPL	2.5	1	1	>157	>62.8
hyP1CoG2	Hybrid peptide with Gly linker, optP1 C-terminal	VRKPPYLPRPRPRPLGGGKIILRIRWR	2.5	1	2.5	>157	>62.8
hyP7CoG1	Hybrid peptide with Gly linker, optP7 C-terminal	VRKPPYLPRPRPRPLGGGKRRVRWIIW	5	1	5	>154	>30.8
hyP7CoG2	Hybrid peptide with Gly linker, optP7 N-terminal	KRRVRWIIWGGGVRKPPYLPRPRPRPL	5	2.5	2.5	>154	>30.8
Bac5-v291	Optimized Bac5(1–17) variant 291	RWRRPIRRPIRPPFWR	27	1.7	27	>278	>10.3
hyP7B5G	Hybrid peptide with Gly linker, optP7 C-terminal	RWRRPIRRPIRPPFWRGGGKRRVRWIIW	2	2	2	102	51
hyP7B5K	Hybrid peptide with Lys linker, optP7 C-terminal	RWRRPIRRPIRPPFWRKKKKRRVRWIIW	2	2	2	82	41
hyP7B5GK	Hybrid peptide with Gly-Lys linker, optP7 C-terminal	RWRRPIRRRPIRPPFWRKGKGKGKRRVRWIIW	1	1	2	>120	>120
hyP7B5Cys	Hybrid peptide with disulfide bridge, designed to be cleaved in the cytosol, optP7 C-terminal	RWRRPIRRRPIRPPFWRKGKC-S-S- CKGKRRVRWIIW	1	0.6	2	102	>102

SCATTERING CURVES

ANTIFUNGAL PEPTIDES

BioSAXS Can Discriminate Modes Of Action Of Antifungal Substances In Yeast – An Exploratory Study

Kai Hilpert^{1*}, Christoph Rumancev², Paula Matilde Lopez-Perez³, Dominic W. P. Collis³, Jurnorain Gani¹. Vasil M. Garamus⁴. Ralf Mikut⁵. Axel Rosenhahn^{2*}

SCATTERING CURVES

ANTIFUNGAL PEPTIDES

TAKE HOME MESSAGE

THANK YOU

Peptide Synthesis

- Rudolf Volkmer
- Sven Hofmann
- Martin Ashby
- Jurnorain Gani
- Paula Lopez

MRSA optimization

- Martin Ashby
- *P. aeruginosa* optimization
 Jurnorain Gani

■Bioinformatic

- Ralf Mikut
- Artem Cherkasov
- Chris F. Fjell
- Ben Thomas

BioSAXS

Andreas von Gundlach Christoph Rumancev Axel Rosenhahn Vasil M. Garamus Ralf Mikut Jurnorain Gani Martin Ahsby

THANK YOU

